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Abstract: 

Behavior genetic research addressing how genetic variation and environmental variation explain complex 

phenotypes has instigated a dramatic paradigm shift in the field of psychological science in the last 50 

years. The classic nature vs. nurture debate has slowly given way to a more nuanced view of nature and 

nurture that recognizes the complex interplay of genes and environment in explaining human psychology. 

More recently, genome-wide molecular genetic approaches have afforded more detailed and nuanced 

insight into how genetic variation can explain complex phenotypes. In this chapter, we provide an 

overview of behavior genetic methods, interpretations, and implications. We review an assortment of 

well-established behavioral genetic research designs used in the psychological and behavioral sciences 

across two broad categories of methods: classical family studies and genome-wide association studies. 

For each approach, we review the basic research design details, underlying assumptions of the approach, 

and proper interpretation of results produced by each approach. We conclude with discussion of three 

primary implications of behavior genetic methods, including how findings from behavior genetic research 

can inform causal inference, developmental processes, and understanding of the evolutionary history of 

traits. As advances continue in behavior genetic methodology, so too will our understanding of how 

genetics influences our psychology and behavior. 
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BEHAVIOR GENETICS  3 

BEHAVIOR GENETICS 

Importance 

Findings from the field of behavioral genetics has been a substantial paradigm shift for the study 

of psychological science (Plomin et al., 2013, 2016). It is now beyond reasonable debate that 

understanding the role of genetic variation for explaining complex phenotypes is necessary for informed 

study of psychology and behavior. Genetic variation is essential to the process of evolution by natural 

selection. The idea that heritable variation provides the raw material upon which selection can act has 

long been acknowledged in the biological life sciences. Humans – and their brains – are not exempt from 

evolutionary processes. Any approach to understanding psychology that fails to take into consideration 

that genetic variation underpins the foci of psychological study is, therefore, untenable and not a viable 

approach to the conduct of psychological science (see Penke, 2011). 

The claim that human psychological traits are heritable is supported on a substantial scale (e.g., 

Plomin et al., 2016; Polderman et al., 2015). Although this basic understanding of the widespread 

heritability of psychological and behavior traits has been prominent since the rise of the field in the 1970s, 

the methods used to understand genetic (and environmental) influences on traits has substantially 

advanced in the era after sequencing the human genome, beginning in the early 2000s (International 

Human Genome Sequencing Consortium, 2001; Venter et al. 2001). With these methodological 

advancements came a better understanding of the complex interplay of genes and environment that 

produce phenotypes. As methods and interpretations have become increasingly complex, however, basic 

understanding of behavior genetics has become increasing difficult as well.  

Our goal in this chapter is to provide readers with a broad overview of the popular methods 

within the domain of classical family studies (e.g., twin and adoption studies), the foundation of behavior 

genetics, and within the domain of contemporary approaches using genome-wide approaches, which are 

leading to exciting and informative insights into the evolutionary history of traits. For each method, when 

relevant, we provide an overview of the research design, key aspects and terms, and the major 

interpretations of the results produced by the method. Finally, we conclude with three major implications 

of behavior genetics for psychological science, including inferring causality, inferring developmental 

processes, and inferring the evolution of traits. 

Methods 

 The field of behavior genetics uses myriad research designs. Classical behavior genetics, which 

emerged in the 1970s, uses natural quasi-experiments afforded by twinning and adoption to infer the 

extent to which observable phenotypes are explained by genic variation and environmental variation. 
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Contemporary behavior genetics also uses genome-wide approaches to identify specific genetic markers 

associated with phenotypes. The history of these methodologies occur in parallel with the history of 

genetics more broadly, beginning with the discovery of DNA structure in 1964, experiencing a paradigm 

shift with the sequencing of the human genome in 2001, and elevating to public discourse in the current 

era of personal genomics. Classical approaches and genome approaches to studying the complex 

relationships between genetic variation and observable phenotypes differ in fundamental aspects with 

regard to design, assumptions, and implications. Each approach, however, is aimed at the same 

overarching goal: to advance understanding of how our genes contribute to who we are. This section will 

focus on two major domains of behavior genetic methods –family studies and genetic association 

approaches – outlining basic design features, assumptions, and reasonable interpretation of results.  

Classical Family Studies 

Twins are one of nature’s greatest experiments, and the foundation of classical behavior genetics. 

Twins come in two types: monozygotic (MZ) and dizygotic (DZ). Because MZ and DZ twins differ in 

their average degree of genetic relatedness, the two genetic types of twins allow for inferences about the 

sources of influence on phenotypes. MZ twins result from a fertilized egg splitting very early in 

development, which means that their DNA is identical. DZ twins, in contrast, develop from different 

fertilized eggs, meaning that they are no more alike or different than a random pair of siblings from the 

same parent; DZ twins are simply siblings born on the same day. MZ twins share 100 percent of their 

DNA, whereas DZ twins share approximately 50 percent of their DNA, on average. Knowing parameters 

of average genetic relatedness, in combination with natural quasi-experimental situations caused by 

adoption and twinning, allows for inferences about the contributions of genes and environment to 

phenotypes of interest. 

The contribution of nature (genes) and nurture (environment) to observable phenotypes has been 

a point of debate for more than a century. Children that grow up in the same family tend to resemble one 

another in many aspects. For most of psychological science’s history, most prominently in psychoanalytic 

and behavioristic traditions, similarities between family members were presumed to be due primarily to 

the fact that they shared a family environment—resources, experiences, parenting, or neighborhood, for 

example. Utilization of twinning and adoption led to simple extrapolation about the likely degree to which 

nature and nature could account for family resemblance. If family resemblance is largely due to growing 

up in the same household, then it can be reasoned that: (1) adoptive siblings, who are not genetically 

related, should be just as similar as genetic siblings that grow up in the same house, and (2) MZ twins that 

grow up in different homes due to adoption in infancy, should be no more similar than two people drawn 

at random who grow up in different families.  
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These predictions were not borne out by observation, however. Early studies of twinning and 

adoption found precisely the opposite of what is predicted based on family environment causing 

similarity. Twins that are reared apart are nearly as similar on psychological and behavioral measures as 

twins reared together, and by late adolescence adoptive siblings are no more similar than two randomly 

selected children reared in different homes. These findings suggest that family resemblance is at least in 

part due to the contributions of shared genes, rather than to the contributions of shared environment. 

Twinning and adoption studies comparing the relative similarity between children reared together and 

apart are useful for understanding in broad strokes the contributions of genes and environment, but more 

precise estimates are produced from quantitative models utilizing MZ and DZ twins. 

A fundamental goal of psychological science is to explain variation. Twin studies explain 

variation in a phenotypic trait, but in a different and complementary way to standard psychological 

science methods. Twin, adoption, and family studies, collectively known as quantitative genetic studies, 

can produce two primary outcomes of interest: (1) partitioning the variation of a trait into (usually) the 

three components of genetic variation, shared environmental variation, and non-shared environmental 

variation; and (2) partitioning the covariation between two traits – referred to as a phenotypic association 

– into (usually) the three components of genetic variation, shared environmental variation, and non-shared 

environmental variation. 

Partitioning Variance. Correlation comparisons and ACE models (A meaning genetic variance, 

C meaning shared environmental variance, and E meaning non-shared environmental variance) are 

common approaches used to partition sources of variance for a particular trait in a given population. That 

is, given a population of individuals, univariate models can estimate what proportion of individual 

differences within the population for a phenotypic trait—for instance, extraversion—are attributable to 

genetic variation within the population, and what proportion is attributable to environmental variation 

(shared and nonshared) within that population. Phenotypic variance is composed of three factors, two of 

which are distinct environmental factors. Genetic variance explaining phenotypic variance is referred to 

as heritability (h2), which acts to make two individuals who share more genes more similar to one another 

than two individuals who share fewer genes. Environmental influences on phenotypic variation are 

comprised of two components: shared environment (c2) and nonshared environment (e2). The 

environmental components (collectively referred to as environmentality, c2 + e2) refer to phenotypic 

variance accounted for by nongenetic, or “environmental” experiences, in a broad sense. Shared 

environmental variation, such as family-level variables, are aspects of the environment that make siblings 

(or others) reared together more similar to one another. Nonshared environmental variation, such as 

unique peer groups or stochastic developmental variation, are aspects of the environment that make 
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siblings (or others) reared together dissimilar from one another (the nonshared component usually also 

includes measurement error). 

The classical method to estimating the contributions of genetic and environmental variance to a 

phenotype is to compare correlations between MZ and DZ twins to produce estimates of variance 

components: genetic, shared environmental, and nonshared environmental. The only information required 

is the average correlation between MZ and DZ twin pairs for a particular trait. Calculations can then be 

made to estimate the degree to which each component explains the phenotypic trait (Purcell, 2016). To 

calculate the contribution of genetic variation, h2, one calculates the difference between the MZ 

correlation and the DZ correlation and then multiplies by two, h2 = 2 [rmz – rdz]. The contribution of 

shared environmental variation can be calculated by subtracting the MZ twin correlation from the genetic 

contribution calculated above, c2 = rmz - h2, or by subtracting half the genetic contribution from the DZ 

twin correlation, c2 = rdz – [h2/2]. The nonshared environmental component is then calculated by 

subtracting the genetic and shared environmental values from one, e2 = 1 – [h2 + c2].  

The above method based on the correlation coefficients between MZ and DZ twins will produce 

only one estimate. For example, a trait with rmz = .60 and a rdz = .35 will yield only h2  = .50, c2  = .10, and 

e2 = .40. There is no other answer to the calculations. Structural equation modeling can also be used to 

estimate heritability and environmentality, applying the popular ACE models. The benefit of using 

structural equation models is that models can be compared to one another to examine, for example, if the 

c2  = .10 value significantly contributes to the overall understanding of the trait of interest. Does removing 

the c2 value from the model (the equivalent of fixing c2  to zero) substantially affect the fit of the model to 

the data? Science favors parsimony, such that the simplest explanation should be accepted. ACE models 

typically test full models including each component, and additionally specify simpler combinations, AE, 

AC, CE, A, C, E, and compare the fit of those models to the full model. If, for example, the AE model is a 

better fit, or does not significantly impact the model fit compared to the full ACE model, the simpler 

model will be accepted, such that the contribution of shared environmental variance will be specified as 0, 

thus changing the relative contributions of genetic and nonshared variance. 

ACE models, like any statistical model, rely on assumptions to produce estimates of heritability 

and environmentality for a particular trait. First, the models assume that MZ twins share 100 percent of 

their DNA and that DZ twins share 50 percent of their DNA. These assumptions of genetic relatedness are 

reflected in the model specifications, such that the A factors, or genetic latent factors, are set to correlate 

at 1.0 in MZ twins, and 0.50 in DZ twins. In theory, both of these assumptions are true, but in practice 

MZ and DZ twins genetic relatedness can vary around these assumed values. MZ twins, for example, are 

derived from the same fertilized egg, meaning that they start with exactly the same genome, but later 

mutations, genetic expression, and epigenetic modifications can result in minor genotypic differences 
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between MZ twins, though only in parts of the body (Charney, 2012). The assumption that DZ twins 

share 50 percent of their DNA reflects a population average, with specific samples, especially smaller 

samples, more likely to vary above or below the 50 percent average. Mathematical simulations to 

investigate the impact of deviations from genetic relatedness assumptions have shown that they have little 

impact on accurate estimation of heritability (Lui et al., 2018). Violation of the assumptions appear to 

have the largest effect on phenotypes of high true heritability, underestimating heritability estimates up to 

10 percent, and correspondingly inflating nonshared environmental estimates; estimates of phenotypes of 

low true heritability are less likely to be affected (Lui et al., 2018). 

Variance partitioning approaches also assume that the environmental experiences of MZ twins are 

no more alike than the environmental experiences of DZ twins, which is referred to as the equal 

environments assumption (Bhattacharjee & Sarkar, 2017; Scarr, 1968). Critics of twin studies argue that 

MZ twins are socialized to be more similar, and have more similar experiences because of their zygosity, 

which may bias heritability estimates upward (e.g., Joseph, 2004). Several types of studies, however, 

provide support for the equal environments assumption. Results of studies examining the similarities of 

MZ twins reared apart show that reared-apart MZ twins are just as similar as reared-together MZ twins. 

Other research has investigated whether true zygosity or perceived zygosity influences similarities 

between twins (Kendler et al., 1993), finding no association between perceived zygosity on trait 

similarity. Research utilizing doppelgangers (Segal et al., 2018), who are not genetically related, support 

this idea, indicating that people are treated similarly because of their heritable traits, not because of their 

zygosity. That is, people possessing particular heritable traits evoke similar reactions from other people. 

MZ twins are genetically identical and therefore evoke similar reactions from others, rather than others 

treating them similarly because of their perceived zygosity. 

Many highly powered variance partitioning studies have produced robust and replicable results 

(Plomin et al., 2016; see also Stanley et al., 2018). These results from twin methods have culminated in 

what are referred to as the laws of behavior genetics (Turkhiemer, 2000). The first law of behavior 

genetics is that all complex phenotypes are, to some degree, heritable. The strongest evidence in support 

of this claim comes from a meta-analysis of twin studies on nearly 18,000 traits (e.g., intelligence, 

personality traits, health, relationships) – the largest behavioral genetic analysis on psychological 

phenotypes published to date (Polderman et al., 2015). Polderman et al. (2015) reported an average 

heritability of 49% across all complex human traits evaluated, supporting the first law. The results also 

showed that, on average, approximately 17% of variation across complex human traits is attributable to 

shared environmental variance. The finding that shared environment explains relatively less phenotypic 

variance than does genetic variation supports the second law of behavior genetics: that shared genes 

largely drive similarities between biological relatives, rather than shared environments. Finally, 
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Polderman et al. show that the remainder of the variance of phenotypic traits, on average, is attributable to 

nonshared environmental variance. Because shared genetic variation and shared environmental variation 

function to explain similarities between individuals, that a substantial proportion of phenotypic variation 

is nonshared implies that unique experiences and random stochastic developmental variation are what 

explains individual differences, which is known as the third law of behavior genetics.  

Partitioning Covariance. A foundation of psychological science is to understand associations 

between two variables, or phenotypes, of interest; for example, understanding the association between 

early developmental stress and psychosocial outcomes. Such associations are referred to in behavior 

genetics as phenotypic associations. Phenotypic associations are correlational associations or regression 

coefficients reported in standard psychological research. What behavior genetics can add to standard 

phenotypic associations is the decomposition of the phenotypic association into the three components of 

genetic covariation, shared environmental covariation, and nonshared environmental covariation. That is, 

behavior genetic methods can identify the extent to which a reported correlation is explained by different 

factors, yielding informative insights into the nature of associations. Several statistical methods, often 

using structural equation modeling, can be used to partition covariance, and are explained in detail 

elsewhere (Turkheimer & Harden, 2014). Here, we will focus on the importance of this approach for 

psychological research, and the interpretation of partitioning covariance outcomes. 

Establishing causal relations between traits or behaviors is a laudable goal of psychological 

research, yet one that is littered with myriad ethical and methodological obstacles. Given these obstacles, 

the social science model necessitates that three requirements are met to state that evidence is consistent 

with a causal interpretation: (1) two variables are related; (2) appropriate temporal sequence between the 

variables; and (3) relevant confounds are accounted for. Such approaches are motivated by a desire to 

establish a causal effect: that the change in one variable will cause a change in another variable. Behavior 

genetic methods are more aimed at identifying the causal structure of phenotypic associations (Briley et 

al., 2018): partitioning the covariance into different components of influence. Both causal goals are 

related. Once causal structure is identified, more precise investigation of causal effects can be pursued, for 

instance, by investigating genetic mechanisms or family-level factors.  

Because of the first law of behavior genetics – that all complex phenotypes are heritable – it is 

reasonable to suspect that genes play some role in the architecture of phenotypic associations (Briley et 

al., 2018). Genetic covariation can affect two traits independently, producing a spurious phenotypic 

association. This particular problem, known as genetic confounding, is akin to the third variable problem 

in psychology. Identifying genetic confounds of phenotypic associations is necessary to accurately 

identify causal phenotypic effects. For example, if an association is found between depression and 
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anxiety, but the association is predominantly accounted for by shared genetic covariation as described 

above, changing levels of depression may not produce reliable changes in anxiety. Controlling for genetic 

covariation is necessary to identify true effects between phenotypic associations, as is often the goal of 

mainstream psychology. As the genetic covariation between two traits, rg, increases, the more likely is it 

that genetic covariation may be confounding phenotypic associations (Barnes et al., 2014). 

The findings of shared and nonshared environmental covariance, rc and re respectively, are more 

nuanced in their interpretation (Turkheimer & Harden, 2014). A result of a significant proportion of a 

phenotypic effect being attributed to shared environmental covariance is demonstrating that between-pair 

differences are accounting for a proportion of the effect. A robust example of this is the positive 

association between spanking and physical abuse (Jaffee et al., 2004a). Covariance partitioning indicates 

that the majority of the phenotypic effect between spanking and physical abuse is attributable to shared 

environmental covariation, meaning that between-family differences, rather than within-pair (i.e., parent 

and child) differences account for the association. This contrasts with findings from the same data 

showing that the association between spanking and externalizing problems is attributable to genetic 

covariation and nonshared environmental covariation (Jaffee et al., 2004b). What this means is that after 

accounting for estimated genetic confounds, the remainder of the effect of spanking on subsequent 

externalizing problems is attributable to within-pair differences via nonshared environmental covariation, 

and not between-family differences. That within-pair differences, or nonshared environmental 

covariation, explains substantial proportions of phenotypic effects is, in fact, the strongest evidence for 

(quasi)causal effects that psychologists are often looking for (Turkheimer & Harden, 2014). One of the 

most important benefits of behavior genetic methods is the identification of environmental covariance to 

infer (quasi)causal phenotypic effects from correlational data.  

Extended Family Designs. Extended family designs provide a method to identify environmental 

sources of variance on outcomes while controlling for genetic relatedness. Such designs allow for 

partitioning variance into genetic and environmental components to address questions of intergenerational 

transmission. Just as classical covariance partitioning methods, described above, can decompose the 

variance between two phenotypic traits, extended family designs have the same purpose, but are focused 

on phenotypic associations between generations. Phenotypic associations between generations, often 

between parents and children, are ubiquitous and foundational to many psychological theories of 

development, making extended family designs valuable to understand the causal architecture and 

directionality of intergenerational transmission (McAdams et al., 2014).  

One popular extended family design is the Children of Twins (CoT) design, for which MZ and 

DZ twin parents and one child for each parent are assessed. CoT models allow for control of genetic 
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covariation between parents and offspring, with the primary outcome being a path estimate between the 

parent and offspring phenotype. A limitation of the one-child CoT design is a lack of an estimate for 

shared environmental covariation on offspring phenotypes given that the offspring are assumed to reside 

in different environment. A difficulty with the CoT (or, by extension, Children of Siblings) design is the 

lower power to detect the sources of variation in offspring traits (McAdams et al., 2018). The relatedness 

coefficients between the targets, the offspring, are cousin-level (0.25 and 0.125), rather than sibling-level 

(1.00 and 0.50) as in classical twin models, meaning that the coefficients themselves are lower and the 

difference between them smaller, which causes reduced statistical power to detect effects. Power analyses 

indicate that nearly 1,000 families are needed to accurately detect a phenotypic association between 

parent and offspring assuming moderately heritable traits (h2 = .35; McAdams et al., 2018). 

Newer models extending the one-child CoT designs can more accurately model relationships 

between parents and offspring. McAdams et al. (2018) proposes using a multiple CoT (MCoT) design, 

whereby at least two children of each twin parent are assessed. The addition of multiple children allows 

for modeling shared environmental variation on offspring phenotypes that is not available in the classic 

CoT model. Moreover, MCoT designs can appropriately model individual relationships between parent 

variables and offspring variables. Research on parent-child interactions has shown that children shape 

parenting behavior, therefore violating the assumption that parent variables that psychologists are most 

often interested in are invariant across children. For variables such as emotional sensitivity, each child 

may evoke more or less sensitivity from the same parent. MCoT designs (McAdams et al., 2018) can 

model such relationships, yielding more accurate estimates of parent-offspring associations. Another 

benefit of MCoT designs, relative to classic CoT designs, is that fewer families are needed (around 500) 

to achieve adequate power (McAdams et al., 2018). Although nearly as many individuals are needed 

(more children per family, for example), the fact that fewer families need to be recruited could be a 

benefit for executing high-powered extended family designs. 

Longitudinal Designs. Behavior genetic models assume that genetic and environmental 

influences operate across development to give rise to observable phenotypes. Gene-environment interplay 

can take various forms across development (Briley et al., 2019; Scarr & McCartney, 1983). Take the 

associations between parenting and offspring outcomes. Cross-sectional designs, such as the CoT designs 

described previously, can partition covariance to identify the true phenotypic association between parent 

and offspring. The design, however, cannot inform the directionality of the association, or the nature of 

the association over time. Consider, for example, the association between harsh parenting and offspring 

externalizing behaviors. A cross-sectional CoT design can yield a phenotypic association between 

parenting and externalizing behaviors that controls for the genetic relatedness between the parent and 
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offspring, but it does not provide information as to whether the harsh parenting led to externalizing 

behaviors or whether the child’s externalizing behaviors prompted harsh parenting (or both). 

Longitudinal designs can offer insight into how parents affect children, and how children affect 

parents. Children are not born as blank slates on which parents unidirectionally shape child outcomes. 

Children are born with capacities that shape the parenting they receive. Children are also not randomly 

allocated to environmental experiences (Plomin et al., 1977; Scarr, 1982). Environments provided by 

parents are influenced by their heritable qualities, some of which are passed down to offspring (Kendler 

& Baker, 2007). Finally, mating is non-random, meaning that traits of reproducing partners can be 

correlated both phenotypically and genetically (Yengo et al., 2018).  

That environments are nonrandomly distributed across individuals and are correlated among 

genetically similar individuals is referred to as gene-environment correlation, or rGE. rGE can take 

several forms across development: active, evocative (or reactive), and passive. Active rGE occurs when 

individuals actively seek out, avoid, or modify their environmental experiences that are nonrandomly 

influenced by their genotype. Evocative rGE occurs when organisms receive responses or evoke reactions 

from others in their environment that are nonrandomly influenced by their genotype. Passive rGE occurs 

when the environment that an individual inhabits—such as the neighborhood a child grows up in—is 

correlated with their genome. Parents endow offspring with an environment in which to live, and a 

genome comprised of half of each (biological) parent’s genes, such that the environments children 

experience are correlated with the genotypes that they inherit from their parents (Kendler & Baker, 2007).  

The dominant type of gene-environment correlation is proposed to change over the course of 

development (Scarr, 1992). Passive gene-environment correlation has greater explanatory power in 

infancy and early childhood. Because human infants are heavily dependent on caregivers during the first 

years of life, evident gene-environment correlations are most likely the passive type given the control 

caregivers have over children’s environment. The importance of active gene-environment correlation 

increases with age, as individual decision making and environmental control also increase. The 

implications of this change in dominant gene-environment correlation type over development can, in part, 

explain the general increase in heritability estimates of a myriad of traits (most notably, intelligence) over 

development (Plomin et al., 2016). 

The interplay of genes and environments is not simple or straightforward, but rather complex and 

dynamic (Briley et al., 2019). A comprehensive understanding of gene-environment interplay for 

understanding phenotypic associations therefore requires that genetic variance is accounted for in research 

designs, especially longitudinal designs in which genetically related individuals are the targets of focus. In 

much developmental psychology research, such targets are often parents and offspring, who share, on 
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average, 50% of their DNA. Failing to account for the genetic relatedness between family members may 

produce biased phenotypic effects of developmental processes across the lifespan. 

Genetically-sensitive longitudinal designs can provide a nuanced understanding of purported 

parenting effects on child development, for example. The negative developmental impacts of spanking on 

child developmental outcomes is a contentious topic of research, of which most centers on the negative 

effects of parenting on children. A behavior genetic perspective, however, offers additional insights into 

understanding the dynamic nature of such phenotypic associations. A longitudinal twin study conducted 

by Cecil et al. (2012) is particularly suited to demonstrate evocative child effects of spanking, which are 

suggested by the results of the above genetically-informed studies. Using cross-lagged panel analyses, 

Cecil et al. examined whether harsh punishment (i.e., smacking and shouting) was associated with self-

control difficulties from early childhood to adolescence. The results indicated bi-directional effects of 

harsh punishment and self-control; but, interestingly, between seven and 12 years, only evocative effects 

were found such that self-control difficulties predicted later harsh punishment, but harsh punishment did 

not predict later self-control difficulties. Cecil et al. did find long-term effects of harsh punishment on 

early adolescent conduct problems, but for only boys. These results are consistent with the general notion 

that children’s individual behavior can evoke or exacerbate parental punishment, with the unique 

contribution that the effects of harsh punishment may be particularly relevant in early childhood, as 

opposed to later childhood and adolescence (Cecil et al., 2012). 

Genetically-sensitive longitudinal designs can be utilized to understand how variance components 

change over time, and can provide insight into which components are responsible for stability and change 

over development (Briley & Tucker-Drob, 2017). Each trait investigated is unique in many regards, but 

common among well-studied traits is the finding that shared environmental variance decreases rapidly 

across development (Plomin et al., 2016; Briley & Tucker-Drob, 2017), whereas non-shared 

environmental variance and genetic variance increase or remain relatively stable. Longitudinal behavior 

genetic designs are also capable of decomposing phenotypic stability into genetic and environmental 

components. Essentially, these models identify whether the genetic or environmental variance of a 

phenotype at one time point is the same variance that influences the phenotype at another time point. 

Specifically, variance components are correlated across time points. If the genetic variance component for 

a trait at time 1 are highly correlated with the genetic variance component for a trait at time 2, this 

indicates that genetic variance is, in part, responsible for the observed phenotypic stability of the trait. 

Collectively, longitudinal behavior genetic designs can provide a wealth of information on phenotypes 

over development. 

Genetic Association Approaches 
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 Classical family studies dominated the behavior genetic literature until the 21st century, largely 

because such designs were the most accessible to researchers. The sequencing of the human genome in 

2001 propelled a new era of behavior genetics research; an era that is rapidly advancing and changing. At 

the beginning of this transition, scientists worked under what we now know to be false assumptions of 

how genes are associated with complex phenotypes. The goal was to find “genes for” a particular trait, 

with the assumption being that traits would be underpinned by a few genes with relatively large effects, 

and that these genes would explain the genetic variance for traits that had been indicated by decades of 

family studies.  

The focus on finding “genes for” a particular trait produced a cascade of research in the early 

2000s. Linkage and candidate gene approaches were applied to complex behavioral traits because such 

approaches had been so successful at identifying genes that contributed to Mendelian disorders – 

disorders in which a single gene can be identified by following traditional inheritance patterns, which are 

more common for some medical diseases. The “genes for” approach to complex phenotypes was 

bolstered by early high-profile candidate gene studies, such as those on depression (Caspi et al., 2002, 

2003). Enthusiasm for candidate gene approaches waned as the number of failed replications increased, 

including the high-profile candidate gene findings for depression (Border et al., 2019). It is now the 

consensus view that candidate gene approaches to understanding complex phenotypes are flawed and 

insufficient given what is now know about the genetic nature of complex phenotypes (Dick et al., 2014). 

Virtually all phenotypes of relevance for psychologists and behavioral scientists belong in the category of 

complex phenotypes. 

 Genome wide association studies (GWAS) became increasingly popular as their cost dropped 

through the 2000s (Mills & Rahal, 2019). GWAS identify associations between genes and phenotypes, as 

do candidate gene and linkage approaches, but do so across the entire genome. GWAS utilize genetic 

markers known as single nucleotide polymorphisms, or SNPs, across the genome to identify genetic 

regions that are associated with an outcome of interest. SNPs are variations in DNA building blocks 

(either A, C, T, or G), whereby, say, a C might be replaced by a T at a certain locus in a gene or stretch of 

DNA. These variations are normal in DNA, but particular variations may be relatively more or less 

common in populations of individuals. Catalogs of known SNPs (more than 100 million have been 

identified) are used as reference when correlating SNPs with phenotypes of interest. To date, nearly 4,000 

GWAS have been conducted on thousands of traits (Mills & Rahal, 2019). The findings of which have 

greatly informed the field of behavior genetics. 

Genetic Associations with Phenotypes. Family studies, described above, provided the 

foundation for what are known as the “three laws of behavior genetics” (Turkheimer, 2000). GWAS has 



BEHAVIOR GENETICS  14 

contributed to what is now known as the “fourth law” of behavior genetics: complex phenotypic traits are 

highly polygenic (Chabris et al., 2015). Polygenic means that the phenotypic trait of interest has hundreds 

to thousands of genetic associations. The thousands of GWAS that have been published over the 

preceding two decades have revealed approximately 10,000 robust associations between genetic markers 

and various traits and disorders (Visscher et al., 2017), using a purely exploratory approach. The 

polygenic nature of complex traits sits in stark contrast to historical assumptions of candidate gene and 

linkage approaches that predicted just a few genes would be found underpinning each trait. 

This fundamental insight to the polygenic nature of complex phenotypes also changed the way in 

which the effects of genes on complex phenotypes are understood. Whereas candidate gene approaches, 

for example, assumed that identified genes would have substantial effects and would thus explain the 

genetic variance estimated from family studies, GWAS approaches were increasingly producing two 

novel insights. (1) Identified genetic variants have very small effects, often with each genetic variant 

explaining much less than one percent of the variance of a phenotype; and (2) GWAS approaches 

struggled to explain the genetic variance estimated from family studies, with such approaches yielding 

proportionately small heritability estimates, a problem referred to as missing heritability. 

  The small effects of individual genetic associations with phenotypes have implications for how 

behavior genetic research is conducted. Because many genetic loci contribute to the genetic variance of a 

trait, and thus the effect of each genetic variant is very small, it then implies that GWAS sample sizes 

must be very large to find reliable and accurate genetic associations. Indeed, the average sample size of 

GWAS has increased substantially since the first GWAS in the early 2000s, with some of the largest 

studies using data from over 1 million people (Mills & Rahal, 2019). Because larger samples have greater 

power to detect small effects, such as the type of effects GWAS are searching for, the number of 

associations found between genetic loci and complex phenotypes has rapidly increased over time as well. 

Analyses of the literature show that as sample sizes of GWAS have increased, so too have the number of 

associations found, and the number of traits studied. SNPs from GWAS can also be used to estimate a 

heritability based on this genetic data, free of the assumptions underlying family studies (as discussed 

above) (Yang et al. 2010). This SNP-based heritability forms the natural upper boundary for how much 

variance of a trait can be explained by SNP associations from GWAS. Currently, there seems to be no 

plateau of GWAS associations with increasing sample sizes, suggesting that continuing to increase 

sample sizes will continue to identify novel genetic associations and approach the level of explained 

variance set by the SNP-based heritability (Visscher et al., 2017). 

 However, estimates of SNP-based heritability from GWAS are often substantially smaller than 

heritability estimates from family studies (usually around half as large). This peculiar part of the missing 
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heritability is a gap that cannot be expected to close just by increasing GWAS sample sizes. It is also a 

consequence of the polygenic nature of complex traits: Because SNP catalogs that are used as reference 

panels for GWAS are by nature not complete, and extraordinary sample sizes are needed to detect effects, 

by design, substantial portions of heritability estimates from family studies will not be accounted for in 

average GWAS designs. As sample sizes have increased, and SNP catalogs have expanded, the 

proportion of additive genetic variance from SNP based GWAS is continuing to increase. New methods 

are also being developed to “find” the missing heritability. 

Whole genome sequencing. SNPs used in reference panels for GWAS as described above do not 

cover the entire genome, with many SNPs inferred or imputed based on linkage disequilibrium, which is 

the correlation of a SNPs being associated with another SNP based on its location in the genome. 

Moreover, the SNPs used in reference panels tend to be “common” variants found in at least 1% of the 

population (Visscher et al., 2017). These design features therefore mean that many SNPs will not be 

analyzed, which includes rare genetic variants occurring in less than 1% (and often much smaller 

proportions) of the population. Rare variants contribute to the problem of SNP heritability estimates being 

smaller than family study heritability estimates.  

Whole genome sequencing methods are being developed and refined to address these limitations 

of traditional SNP based GWAS to “find” the missing heritability of complex phenotypes. Many whole 

genome sequencing methods have been developed in recent years, with the utility of each depending on 

the specific genetic nature of the trait being assessed (Evans et al., 2018). Because whole genome 

sequencing methods can capture more SNPs at lower frequency levels than traditional GWAS 

approaches, whole genome sequencing studies have found that typical SNP heritability estimates may be 

underestimated by ~20% for most traits due to non-inclusion of rare variants (Evans et al., 2018).  

Rare variants have become increasingly important for understanding and estimating the 

heritability of complex phenotypes and for explaining substantial amounts of heritability estimates found 

in family studies. Rare or low frequency variants, in contrast to the common variants tagged as SNPs in 

typical GWAS, have a greater impact on the outcome of interest, meaning that each rare variant explains 

a greater proportion of variance in the phenotype than does each common variant. Common variants, for 

example, often explain less than 0.5% to 1.0% of variance in a phenotype, whereas the effect of rare 

variants can be up to ten times larger than common variants in some cases (Manolio et al., 2009; Marouli 

et al., 2017). The heritability of traits such as intelligence and educational attainment has been much more 

accurately estimated using indirect approaches to capture rare variants, with family-specific (i.e., rare) 

genetic variants being implied in half of the heritability of these traits (Hill et al., 2018). 
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GWAS approaches, including whole genome sequencing methods, have unambiguously 

demonstrated the high polygenic nature of complex phenotypes, such that hundreds or thousands of 

genetic variants underpin traits of interest. Alternatively, some suggest that rather than polygenic, 

continued research could reveal that complex phenotypes will be more accurately described as 

“omnigenic” with essentially all active genes being associated with every complex trait (Boyle et al., 

2017). Whole genome sequencing methods (see Evans et al., 2018) continue to utilize the full breadth of 

the information available to geneticists to uncover heritability of complex phenotypes and solve the 

missing heritability problem prompted by earlier genetic association methods (Génin, 2019). It is likely 

that methods will continue to improve resulting in continually increasing accuracy of heritability.  

Polygenic Scores. GWAS has demonstrated that many genes of very small effects underpin 

phenotypes; therefore, using the genome to predict phenotypic outcomes necessarily needs to be based on 

the effects of multiple genes (Turkheimer, 2015). As GWAS discoveries increased, aggregate genetic 

“scores” started being used as predictors of phenotypes. Most commonly referred to as polygenic scores, 

these genetic predictors are aggregate genome-based calculations given to an individual based on their 

genotype. Polygenic scores are genome-wide weighted averages of significant SNPs from independent 

GWASs (Belsky & Harden, 2019). Although specific methods for constructing polygenic scores vary, 

each follow a general approach. First, significant SNP associations from a GWAS are identified and 

weighted, which is referred to as the discovery sample. Next, using participants that were not included in 

the discovery sample, individual polygenic scores are calculated by summing the weighted SNP alleles 

(Belsky & Harden, 2019).  

Polygenic scores can be calculated for any phenotypic trait for which GWAS is available. Once 

polygenic scores are calculated for individuals within a sample, the polygenic scores can be used as a 

predictor variable in psychological research using standard statistical modeling techniques. Although 

polygenic scores can be useful at the population level, particularly for understanding how relatively high 

or low genetic “risk” for a trait is associated with outcomes, on average, polygenic scores are so far nearly 

useless for prediction at the individual level (Belsky & Harden, 2019; Turkheimer, 2015). Polygenic 

scores are currently capable of explaining a few percentage points of variance in most outcomes, with the 

highest ranges at 3%-15% variance explained depending on the trait (Visscher et al., 2017). Moreover, 

because polygenic scores are built from GWAS, the limitations of GWAS for finding genetic associations 

surrounding sample size, missing heritability, and power, are carried over into the limitations of polygenic 

scores – the score is only as good as the GWAS it is based on, at best. 

Additional problems arise regarding the predictive utility of polygenic scores across 

heterogeneous populations. Allele frequencies between human populations can vary for many reasons 
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(e.g., genetic drift), leading to what is referred to as population stratification, or systematic differences in 

allele frequencies between populations. Because polygenic score construction relies on a discovery 

GWAS sample that is different than the test sample, and the majority of GWAS are from European 

populations (Mills & Rahal, 2019), using European-derived polygenic scores with diverse populations, 

such as those with Asian or African ancestry, results in poor predictive utility of polygenic scores in the 

test samples. For example, an analysis by Duncan et al. (2019) showed that the median effect size of 

polygenic scores in African ancestry samples was only 42% of that in a matched European ancestry 

sample, demonstrating the limitations of polygenic score generalizability to non-European samples. For 

polygenic scores to be of use in diverse human samples, GWAS must be representative of human 

populations. 

Genetic Correlation between Phenotypes. Given that GWAS approaches have demonstrated 

that complex phenotypes are highly polygenic, there is the logical implication that genetic variants 

associated with one trait are likely to be associated with another trait. In other words, pleiotropy – genetic 

variants associated with more than one phenotypic trait – is pervasive (Visscher et al., 2017). Evidence 

for pleiotropy comes from a variety of behavior genetic methods estimating genetic correlations, rg. 

Family studies, for example, can calculate rg by correlating latent genetic factors for two phenotypes in 

twin models; but these correlations do not speak to the specific genetic variants underpinning the 

correlation. GWAS approaches can also calculate rg similarly to family studies, but can also identify 

specific genetic variants that are associated with multiple phenotypes. As with other GWAS research 

goals, large sample sizes, approaching 100,000 participants depending on the precise method, are needed 

to achieve adequate power and produce accurate rg estimates (Rheenen et al., 2019). 

Additionally, whereas family studies require measurements on both phenotypes of interest from 

the same participants to calculate rg, GWAS can estimate genetic correlations and identify underlying 

genetic variants when phenotypes are measured from different individuals (Visscher et al., 2017). 

Limitations of family studies for calculating rg are especially challenging for low frequency phenotypes 

such as disease traits or psychopathologies. GWAS can overcome this limitation by combining 

information from large data sets that have been independently collected for specific disease traits. Such 

approaches to measure pleiotropy using GWAS, in fact, exclude closely related individuals (such as 

siblings or cousins); excluding close relatives from the datasets have the benefit of largely eliminating 

shared environmental confounds that are present in family studies, which may bias the genetic variance 

estimates (Rheenen et al., 2019).  

Whereas GWAS methods for measuring pleiotropy avoid shared environmental confounding, 

researchers need to be cautious of other potential sources of confounding. Population stratification due to 
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genetic drift, non-random mating, and geographic isolation can lead to differences in allele frequencies 

between populations. Such population differences can bias genetic correlation estimates between traits. 

Measuring the same phenotypic traits in two different populations may yield different genetic correlations 

between two disease traits. Such a finding may be indicative of a gene-environment interaction, whereby 

genetic variants are expressed differently depending on the environment; or in contrast, the effect could 

be reflective of the population structure rather than anything to do with the functional associations 

between the traits themselves (Rheenen et al., 2019). For example, a disease that is relatively rare in one 

population may not show the same genetic association with other phenotypes as in a population where the 

disease is more prevalent. The discrepant genetic correlations, however, may not reflect genetic 

architecture differences between populations, but instead could simply be a result of the analysis not 

being able to accurately detect the low frequency genetic variants in the population where the disease is 

rare. 

Genetic correlations provide useful information for researchers. Non-zero genetic correlations 

between two traits can help identify new risk factors for psychiatric conditions, for example, and yield 

insights into the genetic architecture between traits that may not have previously been obvious from 

standard social science methods that measure only phenotypes. For example, the understanding that 

Bipolar 1 disorder, characterized by mania, is more genetically similar to schizophrenia spectrum 

disorders than major depressive disorders (Coleman et al., 2019) was instrumental for changing the 

classification of Bipolar disorders in the fifth edition of the Diagnostic Statistical Manual of Mental 

Disorders to their own class, rather than a class shared with depressive disorders (APA, 2013). 

Implications 

 Behavior genetic methods have substantively advanced in the preceding decades, most notably in 

the genomic era. This chapter is not an exhaustive description of all behavior genetic methods used in the 

social and behavior sciences, but is intended to be informative for a broad scientific audience interested in 

knowing what behavior genetic methods are available and, importantly, what the results of such methods 

mean for our understanding of psychology and behavior. In addition to the broader goals of behavior 

genetics – partitioning variance and covariance, and identifying genetic associations with phenotypes – 

these diverse methods can address pressing questions in the social sciences, especially regarding 

causality, development, and evolution, each of which will be briefly discussed. 

Inferring causality. 

 Causal inference is a primary goal of social and behavioral science, although it is one that 

requires high standards of evidence to achieve. Behavior genetics, more broadly, contributes to improved 
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causal inference in psychological science (although, still imperfect). Inference of causality of an 

association between two traits, X and Y, can be achieved in two ways. First, by conducting a randomized 

controlled experiment to remove any confounding influences on the association between X and Y can 

instill greater confidence that X  Y. However, not all associations psychologists are interested in can be 

achieved by such methods. Also, not every individual is equally likely to naturally find themselves in 

each kind of situation that is simulated by experimental conditions (the very logic of gene-environment 

correlations), making random assignments to experimental conditions intrinsically artificial (Johnson & 

Penke, 2014). Causality can also be reasonably inferred by the removal of all relevant confounds of the 

association between X  Y (Pearl & Mackenzie, 2018). Whereas traditional psychological approaches 

often strive to include relevant controls in non-experimental designs, oftentimes genetic confounds are not 

included. Given that on average half of the variance in any trait of interest is genetic (Poldermann et al. 

2015) and genetic correlations are ubiquitous, this is a major confound to ignore. Behavior genetic 

methods, such as family designs discussed above, offer a means to partition out genetic variance 

explaining the covariance between X  Y to better understand the phenotypic association and more 

accurately identify environmentally mediated effects, which are prime targets for interventions. 

 Behavior genetics knowledge and methods are also relevant for a broad understanding of the 

ways in which we think about causal models in psychological science. Because genes are the starting 

point from which phenotypes and behavior are descendant, temporal precedent is a reasonable baseline 

assumption for working with genetic association data (see Briley et al., 2018 for extensive discussion). 

That is, we can reasonably assume that with association between SNPs and a measured phenotype, 

generally the direction of causality is SNPs  phenotype, and not vice versa. This is an assumption that 

non-genetic psychological data cannot address (Briley et al., 2018). Temporal precedent of genes in 

relation to phenotypes is particularly relevant for hypothesized causal chains whereby genes  trait 1  

trait 2, or as in the case of pleiotropy, trait 1  genes  trait 2. However, not all genetic associations 

identified from GWAS are causal but, in a broad sense, temporal precedence of genes to phenotypes in a 

broad sense is an informative starting point. Psychologists interested in causal inference of phenotypic 

models would benefit from considering behavior genetic models to strengthen claims (Briley et al., 2018; 

Gage et al., 2016; Johnson & Penke, 2014; Turkheimer & Harden, 2013). 

Inferring developmental processes. 

 Although it is a reasonable assumption that, broadly, genes cause phenotypes, genes are not the 

only cause of phenotypes. Phenotypes are intimately related to developmental processes; and behavior 

genetics assumes that phenotypes arise from complex interplay between genes and environment across 

development. Understanding developmental processes are therefore necessary for understanding 
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phenotypes of interest to psychologists and social scientists. Developmental processes underlying 

behavior genetic models are diverse and complex, making identification of any particular developmental 

process underlying a particular phenotype of interest a difficult task. Briley et al. (2019) provides 

extensive discussion of developmental processes underlying behavior genetic models, and the reader is 

encouraged to consult this text directly.  

 The most common developmental processes discussed in the behavior genetic literature are gene-

environment correlations (see Kendler & Baker, 2007; Scarr & McCartney, 1983), which contribute to 

similarities between genes and environments, and to amplification of genetic effects overtime; gene-

environment interactions (see Tucker-Drob & Bates, 2016), in that genetic or environmental effects can 

have differing effects given either one’s genes or environment, and failure to model such interactions can 

inflate genetic or environmental estimates depending on the particular interaction type; and simultaneous 

gene-environment interplay, whereby both correlation and interaction processes (discussed above) are 

occurring.  

Adult phenotypes, which are most often studied in behavior genetics, need to consider the range 

of developmental processes that can yield the adult phenotype (Briley et al., 2019) despite the immense 

difficulty involved in modeling such processes with real data. Put differently, knowing that a personality 

trait in a sample of adults is 40% tells scientists nothing about the developmental processes yielding that 

estimate, or how the estimate changed over time. Careful examination of potential developmental 

processes for a phenotype in the hope of eliminating certain processes can narrow the remaining 

possibilities for a phonotype. Despite the difficulty in modeling behavior genetic developmental 

processes, such understanding is necessary for a complete understanding of phenotypes, and empirical 

attention to developmental behavior genetics is an important step forward for the field. 

Inferring evolution of psychological traits. 

 Although the fields of behavior genetics and evolutionary psychology both have their historical 

origins in the 1970s the fields have developed largely independently with little integration sought between 

the fields. One reason for this is the historical focus of evolutionary psychology to focus on species-

typical adaptations (see Tooby & Cosmides, 1992) whereas behavior genetics has historically focused on 

sources of individual differences (see Plomin et al., 2013). Despite these disciplinary differences, 

behavior genetics can be informative for evolutionary psychology and offer important insights as to test 

evolutionary hypotheses (see Arslan & Penke, 2015, Penke et al. 2007, Penke & Jokela, 2016, and 

Zietsch et al., 2015 for extended discussions).  
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 First, genetic correlations between traits (discussed above) can be informative for understanding 

the co-evolution of traits, such as those regarding sexual selection hypotheses (e.g., the link between 

female preferences and male ornamentation), and for supporting by-product hypotheses (e.g., if trait X is 

a byproduct of trait Y then they should predictably covary genetically). Behavior genetics, and 

particularly GWAS methods can importantly inform proposed evolutionary processes for traits such as 

whether the existence of a trait is most likely due to mutation-selection balance, neutral-mutation-drift, or 

balancing selection, which are each underpinned by differing genetic architecture (Arslan & Penke, 2015; 

Penke et al., 2007; Zietsch et al., 2015). Schizophrenia is a great example for which behavior genetic 

methods have yielded insights to the evolution of the disorder. Because the causal variants (i.e., variants 

found to be associated with schizophrenia in GWAS) underlying schizophrenia explain fractions of a 

percent of the variance in the disorder suggests that deleterious causal variants with large effects are 

selected against and are therefore rare (Ripke et al., 2014). Put differently, behavior genetic evidence 

suggest that schizophrenia is most likely under negative selection and its frequency maintained by 

mutation-selection balance, therefore rendering adaptationist hypotheses of schizophrenia unlikely to be 

true. As GWAS increase in size, frequency, and breadth, evolutionary psychology can greatly benefit 

from its findings. 

Conclusion 

Behavior genetics has revolutionized our understanding of psychology. The big insights from 

behavior genetics (see Plomin et al. 2016) have demonstrated that all complex phenotypes that 

psychologists and social scientists are interested in are to some degree heritable (Polderman et al., 2015). 

To ignore this foundational fact of psychological science is to fundamentally limit our understanding of 

who we are. Research methods available today, most notably classical family studies and rapidly 

advancing genome association and sequencing approaches, continue to deliver insights into psychology 

and behavior. As the field’s methodological tool kit advances, however, understanding of behavior 

genetic findings by scientists and the public need to also advance. Behavior genetics findings are more 

nuanced in their interpretations than early family studies suggested. For example, interpretations such as 

‘the lack of substantial shared environmental effects implies that parents have little effect on their 

children’s outcomes,’ and ‘substantial heritability of a trait naturally implies support for adaptationist 

models of traits’ are no longer grounded in modern behavior genetics. Our intention with this chapter was 

to provide a broad introductory overview of the popular methods in the field, what can be inferred from 

these methods and, importantly, how complex and nuanced such interpretations are for understanding 

psychology and behavior. Behavior genetics has changed the way we understand psychology, and will 

continue to alter the landscape of psychological understanding.  
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