No robust evidence for cycle shifts in preferences for men's bodies in a multiverse

analysis: A response to Gangestad et al. (2019)

Julia Stern!, Ruben C. Arslan?, Tanja M. Gerlach!, & Lars Penke!

'Department of Psychology & Leibniz ScienceCampus Primate Cognition
University of Goettingen

Gosslerstrasse 14, 37073 Goettingen, Germany

2Max Planck Institute for Human Development

Lentzeallee 94, 14195 Berlin, Germany

Corresponding author: Julia Stern (julia.stern@psych.uni-goettingen.de)

Notes: Please use colors for Figure 1 and Figure 3 in print.

Authors have no competing interest to declare.

Word count: 6,824 words (excluding References, Tables, Figures and Abstract)



ONO O WN -

No robust evidence for cycle shifts in preferences for men's bodies in a multiverse

analysis: A response to Gangestad et al. (2019)

Abstract

Gangestad et al. (this issue) recently published alternative analyses of our open data to
investigate whether women show ovulatory shifts in preferences for men’s bodies. They argue
that a significant three-way interaction between log-transformed hormones, a muscularity
component, and women’s relationship status provides evidence for the ovulatory shift
hypothesis. Their conclusion is opposite to the one we previously reported (Jiinger et al.,
2018). Here, we provide evidence that Gangestad et al.’s differing conclusions are
contaminated by overfitting, clarify reasons for deviating from our preregistration in some
aspects, discuss the implications of data-dependent re-analysis, and report a multiverse
analysis which provides evidence that their reported results are not robust. Further, we use the
current debate to contrast the risk of prematurely concluding a null effect against the risk of
shielding hypotheses from falsification. Finally, we discuss the benefits and challenges of
open scientific practices, as contested by Gangestad et al., and conclude with implications for

future studies.

Keywords: multiverse analysis; ovulatory cycle; mate preferences; steroid hormones; body
masculinity; open science
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Recently we'! (Jiinger, Kordsmeyer, Gerlach, & Penke, 2018) published a study in Evolution
and Human Behavior showing that female preferences for cues of male body masculinity do
not increase with fertility across the natural female ovulatory cycle, no matter if they are
judged for attractiveness as a sexual or long-term partner. These results contradict the
ovulatory shift hypothesis (Gangestad et al., 2005). Instead, we found some evidence for a
general increase of female attraction around ovulation, independent of male body masculinity
cues, which is in line with a general increase in sexual desire around ovulation (Arslan,
Schilling, Gerlach, & Penke, in press) and the motivational priority shifts hypothesis (Roney,
2018). Gangestad and colleagues (this issue; henceforth Gangestad et al.) conducted a
reanalysis on our open data, and although analyzing the same dataset, their results and
conclusions differ significantly from ours. We appreciate Gangestad et al.’s effort and
scrutiny of our data and analyses and welcome the opportunity to correct lapses in how we
communicated our preregistered analysis. Still, we disagree that their reanalysis should lead to
substantially different conclusions than the ones we stated. In the following, we clarify
misrepresentations of our and Gangestad et al.,’s study and preregistration. Next, we provide a
multiverse analysis, which provides evidence that Gangestad et al.’s results are not robust. We
then discuss the risks of shielding a hypothesis from falsification and demonstrate the

importance of open science practices.
1. Clarifying misrepresentations

Gangestad et al. critically address a number of points regarding our interpretation of our own
preregistration, our analytic strategy and our conclusion. To begin with, Gangestad et al.
criticize substantial parts of our preregistration. At the time we wrote our preregistration back

in early 2016, preregistrations were not well-established in psychology and clear-cut

! Please note that we refer to the Jiinger et al. (2018) results as “our results”, although Ruben C. Arslan was not a
co-author on this paper. Further, Julia Jiinger’s last name has since changed to Stern.
2
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standards were lacking, especially for complex designs such as ours. As a consequence, we
must admit that some parts of the preregistration were ambiguous and we agree that our
preregistration left room for analytical flexibility. However, we disagree with their
interpretation of our preregistration. We directly derived our analytical decisions from the
wording of the hypotheses we preregistered. In the following, we will contrast our
interpretation of our preregistration and our analytical decisions against those of Gangestad et
al., criticise their analytical decisions that they claim to have derived from their
preregistration, and clarify a potentially misleading reporting of an independent study by

Marcinkowska and colleagues (2018b).

1.1. Predictor variables

1.1.1. Variables that might reflect body masculinity or muscularity

In our study we investigated cycle shifts in preferences for seven potential cues of male body
masculinity, including height, testosterone levels, strength, shoulder-chest ratio (SCR),
shoulder-hip ratio (SHR), upper-torso volume relative to lower torso volume, and upper arm
circumference. In additional analyses, we tested whether our effects were robust when

controlling for BMI.

First, Gangestad et al. criticize our selection of variables and state that we did not offer
a rationale for picking them. We are happy to expand on this. The stated aim of Jiinger et al.
(2018) was to clarify “whether there are mate preference shifts for masculine male body
characteristics across the ovulatory cycle” (p. 413), thus conceptually replicating previous
studies that reported ovulatory cycle shifts for preferences in body height (Pawlowski &
Jasienka, 2005), sexual dimorphism in body shape (Little, Jones, & Burriss, 2007), and
muscularity (Gangestad et al., 2007), especially in the light of reported null replications
(Marcinkowska et al., 2018a; Peters et al., 2009). Note that Gangestad et al. deviate from our

original article by moving the focus solely to muscularity. All seven male features we
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preregistered and investigated were directly derived from previous evidence that they are
sexually dimorphic in human adults and show links to formidability (e.g., Price et al., 2012).
Detailed justifications including references can be found in the supplementary material (Table

S1).

Second, Gangestad et al. point out that the simultaneous testing of all seven predictors
in a multiple regression is a weak test for the potential effect of their shared variance, which
undoubtedly exists. Yet we also analyzed a composite score variable, averaging all seven

masculinity indicators, which did not change the results (see the open script on the Open

Science Framework, https://osf.io/n4hj6/). Gangestad et al. ignored this additional analysis.
Instead, Gangestad et al. compute a composite score of only two variables (strength and upper
arm circumference), selected based on their associations with observer-rated bodily sexual
attractiveness and dominance (the latter taken from the open data of Kordsmeyer et al.,
2018?). Then they factor-analysed all variables and tested the hypotheses with one of the
resulting factors as a robustness check. However, the composite score of strength and upper
arm circumference, as used in the main analyses by Gangestad et al., includes only two out of
seven preregistered masculinity predictors. Thus, we want to emphasize here that the lack of
preference shifts for five out of seven body masculinity cues we preregistered seems

uncontroversial and that Gangestad et al. shifted the focus to only two of them.

Third, Gangestad et al. claim that we did not properly control for confounding eftects
of BMI on preferences, because we controlled for a main effect of BMI, not an interaction
effect. We agree that controlling for an interaction effect would have been the better way to
control for confounds of preference shifts and thank Gangestad et al. for drawing attention to

this issue. However, when we control for an interaction effect of BMI and cycle phase, the

2 We would like to note that the bodily dominance ratings from Kordsmeyer et al. (2018) were collected after the
Jinger et al. (2018) manuscript had already been submitted for publication, thus it never occurred to us to
incorporate them into our original analyses, which would also have been a deviation from our preregistration.

4
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estimated effects remain virtually identical and non-significant. Details can be found in the

supplementary material (Table S2).

1.1.2. Cycle phase versus log-transformed hormones

Further, Gangestad et al. criticize our sampling procedure and the decision to use cycle
phase as our main predictor variable, as a number of fertile phase sessions might have been
missclassified. Therefore, they claim that log-transformed hormone values would have been
the better choice (section 4.12, Gangestad et al., this issue). First, cycle phase was clearly
preregistered as our main predictor variable, as it was part of all of our hypotheses?, whereas
estradiol and progesterone were just mentioned in the mediator hypothesis. However, we used
hormone levels for testing the mediation of our main effect, but not as mediators for the
interaction effect, as we did not detect a significant interaction effect to be mediated (Baron &
Kenny, 1986) and stopping the mediation test at this junction results in tighter error control.
However, Gangestad et al. do not test a mediator effect either, as they simply regress the
mediator on the outcome variable. Second, Gangestad et al. ignore our robustness analyses.
More precisely, as a matter of fact, we excluded all of the potentially missampled participants,
based on a combination of cycle regularity and LH test significance in our robustness checks.
Thus, we redid all our analyses using this sample of #» = 112 women. Whereas it is true that a
positive LH test alone does not necessarily indicate ovulation, using it together with a follow-
up of the next menstrual onset* is probably one of the most reliable procedures we have to

characterize the fertile phase (Fales, Gildersleeve, & Haselton, 2014; Gangestad et al., 2016).

3 Just to give one example for a preregistered hypothesis tested in our study, the exact wording was “Moderation:
When evaluating men as potential short-term partners based on their bodies, women in their fertile window,
compared to their luteal phase, report increased attraction to men with higher baseline testosterone level”.
Hypotheses expecting an interaction effect were introduced with the word “moderation”, hypotheses expecting a
mediator effect of hormones were introduced with the word “mediation”. The preregistration is publicily
available at https://osf.io/egjwv/

4 Also when ovulation is delayed and thus probably a second LH peak was undetected, the cycle must have been
longer and characterized as irregular. Another reason for missclassification of cycle phase would be an
anovulatory cycle, which would either lead to no positive LH test or, again, to a rather long, irregular cycle
length.
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In this subsample, the reported main effect of cycle phase became stronger, but the interaction
effects that would be in favor of the ovulatory shift hypothesis still remained non-significant

(Junger et al., 2018, section 4.6), a fact that was not acknowledged by Gangestad et al.

Gangestad et al. claim that measures of salivary hormone levels are better predictors
than a cycle phase variable comprised of LH tests and actual cycle length based on the
reasonable assumption that estradiol and progesterone causally mediate the effects of cycle
phase. However, they ignore the fact that we cannot measure salivary steroids with the same
accuracy as LH surges. Crucially, measurement error can reverse which predictor is more
likely to show an association. Indeed, since the liquid chromatography—mass spectrometry
(LCMS) analysis of the estradiol levels only detected 22% of all possible values, the samples
were reanalysed using an immunoassay kit (Jiinger et al., 2018, p. 416). Interestingly, the
correlation between LCMS analyses and the immunoassay data was r = .06, which made us
doubt the reliability of the measures and underlined our preregistered decision to focus on
cycle phase as a primary predictor. In line with this, Schultheiss, Dlugash and Mehta (2019)
argue that estradiol and progesterone usually have extremely low concentrations in saliva, and
are thus challenging to assess, even with LCMS analyses. They further mention that serum
estradiol, when in a low range comparable to what is usually observed in saliva, can lead to
immunoassay and LCMS outcomes that show unacceptably low convergence (r = .32, as
reported in Huhtaniemi et al., 2012). Until recently the reliability of salivary hormone
assessments might not have received much attention in the literature, but claiming that
salivary hormones are better variables to investigate ovulatory cycle shifts compared to LH
validated cycle phase with follow-up to the next menstrual onset requires ignoring the critical
issue of measurement error. There is good evidence that LH tests can predict ovulation with

high precision when compared to ultrasound-determined day of ovulation, which is usually
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regarded as the gold standard (e.g. Blake, Dixson, O’Dean, & Denson, 2016), and much less

evidence that salivary estradiol and progesterogen measures can do so.

Furthermore, even when deciding to use hormone values as a predictor rather than
cycle phase, there are different ways to do so. Gangestad et al. decided to log-transform
hormone values for certain theoretical reasons (which are debatable, e.g., Higham, 2016;
Higham, this issue). In contrast, we simply centered hormone values within women and
scaled them afterwards, which dealt with skewness (as shown in our Figure S1, and as
previously done in other hormone-based cycle shift studies, e.g., by Jones et al., 2018; Roney
& Simmons, 2016). A third possibility would be to use untransformed, raw hormone levels
(as e.g., done by Marcinkowska et al., 2018a). All three approaches might have their
advantages or disadvantages, so it is indeed difficult to decide what the best way is to deal
with hormone values. Interestingly, when computing Gangestad et al.’s models using either
scaled hormone values (as we did in our study) or untransformed hormone values instead of
log-transformed values, the two-way interactions between E/P and their strength/muscularity
component (S/M) as well as the three-way interactions between E/P, S/M and relationship
status they report on become non-significant (all ps > .24; see Tables S3 and S4). Again, this

fragility of their results was not acknowledged by Gangestad et alia.

1.1.3. Three-way interaction with relationship status

Gangestad et al. criticize that we did not consider a three-way interaction effect with
relationship status, although we preregistered it. It is correct that we did not report such an
interaction. We decided not to report it as the simpler two-way interactions between cycle
phase and masculinity cues (either entered individually, together, or as a composite score),
were non-significant and test power was likely too low to detect a more complex three-way
interaction effect (Mathieu, Aguinis, Culpepper & Chen, 2012; see also Section 1.2 below).

We regret this omission as it is indeed a deviation from our preregistration, but saw it as
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permissible at the time because it led to unaltered conclusions (see Table S5). Even in
Gangestad et al.’s reanalysis, the two-way interactions between S/M and In(E/P), or S/M and
In(E) or In(P), printed bold in their Tables 4, 5 and 6, because they are “primary effects of
interest”, are almost all non-significant. Importantly, the majority of effects even point in a
negative direction, opposite of the expected effect. Additionally, Gangestad et al.’s analyses
of the three-way interaction of cycle phase x S/M x relationship status do not result in a
significant effect (see their Table 9). The three-way interaction effect they focus on is a
different one: “We include the In(E/P) x Strength/Muscularity x Relationship Status
interaction. This hypothesis had been specified in Jiinger et al.’s pre-registration but was not
tested in their analysis” (Gangestad et al., p. 6). This is not true: we preregistered a three-way
interaction involving cycle phase, relationship status and the masculine body cues. Neither a
Strength/Muscularity composite or factor, nor the three-way interaction involving hormones,
nor the log-transformation of E/P was part of our preregistration. Gangestad et al. make it
seem as if we file-drawered results that ran counter to our favored conclusion, but we never
preregistered, nor ran any of the analyses that yielded significant findings in Gangestad et al.
(i.e., mainly the three-way interaction between In(E/P), S/M and relationship status,

controlling for BMI, on sexual attractiveness ratings).

In addition, we also disagree that their reported analysis on the effect of the three-way
interaction between In(E/P), S/M and relationship status, controlling for BMI, on sexual
attractiveness ratings maps onto the theoretical predictions we made in our paper. In our
preregistration, we predicted that cycle shifts in preferences are larger for partnered women
than for single women (Hypothesis 7, p. 6). A simple p-value for a three-way interaction does
not answer this question; the interaction has to be unpacked. When doing so by analyzing the
two-way interactions between log-transformed hormones and the muscularity composite

score, Gangestad et al. report that the effect is positive but non-significant for partnered
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women, whereas it is negative and significant for singles (see their Table 6). Both effects have
the same size of an unstandardized model estimate (0.03 on an 11-point Likert scale), but in
opposite directions. Based on the theory, we would expect a strong interaction in partnered
women, and an attenuated or zero interaction in single women, not the cross-over effect

reported by Gangestad et al. (as Gangestad et al. acknowledge).

Furthermore, even for Gangestad et al.’s preferred main result the effect size is not
very impressive. Gangestad et al.’s Figure 1 shows model-based estimates of the associations
at the 5th and 95th percentile of S/M. Even when choosing such extreme values for the
moderator, the interaction is barely apparent in their graph. Below, we show a slightly
different graph (see Figure 1) of the same model in which we display model-based estimates
of the effect of the S/M component by relationship status and average versus high log(E/P).
We superimpose (in gray) the model-based differences between women in the strength of the
association (random slopes). We think this graph supports our view that there is only little
variation between and within women in the preference for S/M. Even using Gangestad et al.'s
preferred model, it seems clear that the purported moderators (In(E/P) and relationship status)
explain little of this variation between and within women. Although Gangestad et al. are
correct in saying that our reported Spearman rank correlation does not preclude cycle changes

in preferences, we think the graph rather supports our interpretation.
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Figure 1. This spaghetti plot shows that only a very small amount of the variation in slopes between
women (gray lines) is explained by the moderators In E/P and relationship status. For the most part,
women consistently prefer men who are higher in muscularity (Gangestad et al.’s S/M component).
The slopes are extracted from the fitted multilevel model from Gangestad et al.’s Table 3 and are
estimated adjusted for BMI. The mean levels in this marginal effect plot reflect an average BMI man.

1.2. Gangestad et al.'s preregistration

Gangestad et al. want to show that their analyses are not data-dependent and thus comparable
in informational value to our preregistered analyses. To substantiate this, they base some of
the analytic decisions they aply to our data on a preregistration for a separate, but somewhat
similar study of theirs that they uploaded to the Open Science Framework on 18 April 2018
(https://osf.io/4x7ub/). This is important, because it could potentially ensure that their analytic
decisions were not biased by seeing our results. However, clearly the decision to re-analyse

our data at all was made after seeing our study and our results, as was the decision to frame

10
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the re-analysis in terms of parts of their own preregistration. The impact of such a case of
potential partial data-dependence is hard to predict and it is not clear how well overfitting is
still guarded against (see also Jones, Marcinkowska & DeBruine, this issue). More
importantly, the way they modelled the three-way interaction of log-transformed E/P x
muscularity component x relationship status, controlling for BMI, on sexual attractiveness
ratings, which is the main analyses they built their reanalysis on, is actually not even part of
Gangestad et al.’s preregistration for their separate study, as their study is based on morphed
stimuli for which a Strength/Muscularity component or factor cannot be computed, nor was a
BMI control necessary or planned for their morphed stimuli. Furthermore, in their
preregistration, they explicitly describe a two-way interaction as their key hypothesis, as they
aim to primarily recruit women in relationships, not singles. Thus, contrary to their claim, the

exact analyses they did were never preregistered by anyone.

Moreover, we want to draw attention to the fact that in their preregistration, Gangestad
et al. provide a power simulation, which is laudable. This power simulation indicates that,
with N =250 women, they have a test power of .94 to detect a two-way interaction effect of d
= .35. Transferred to the analyses they report in their reanalyses (N = 157 women, a three-way
interaction effect and a much smaller effect size), their analyses seems heavily underpowered
to find the effect they are reporting. This increases the risk that effect sizes are overestimated,
thus making their reproducibility questionable (e.g., Button et al., 2013). At the very least, the
three-way interaction they report requires direct replication in a well-powered study before

any weight can be put on it.

In summary, Gangestad et al. refer to their own preregistration to lend credence to the
idea that their re-analysis of our data was just as unbiased by seeing the data as were ours.
This is misleading, because important analytic decisions, crucial for the pattern they report,

were made after seeing our results and data. At best, a subset of decisions was constrained by

11
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their preregistration. As it stands, their analyses and reporting gave Gangestad et al. much

leeway to pick and choose which p-values to focus on. Combined with the lower power to

1.3. Gangestad et al.’s “independent demonstration”: misrepresenting Marcinkowska et

In section 5.7 of their reanalysis, Gangestad et al. report an effect of Marcinkowska et al.’s

(2018b) study. Here, they state that Marcinkowska et al. (2018b) report a similar three-way

Marcinkowska et al. (2018b) mainly focus on between-women effects, but also report a
number of different robustness checks for within-women hormone effects, all finding no

compelling evidence for preference shifts across the cycle or tracking changes in within-

direction of the effect Gangestad et al. report for our dataset. Thus, the one singled-out
significant result from Marcinkowska et al.’s (2018b) extensive supplementary robustness

checks (31 Tables) does not support the robustness of the three-way-interaction Gangestad et
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2. Using multiverse analysis to increase transparency

Above, we hinted that changing almost any single analytical decison in Gangestad et al.’s
analysis leads to non-significant results. But which analytical decisions are the right ones?
That is probably impossible to tell, because many potential decisions are plausible and several
may even be equally right in the sense that they provide approximations of the construct of
interest. The concept of the garden of forking paths (Gelman & Loken, 2013) explains how
researcher’s decisions can lead to a multiple comparisons problem via considering a large
number of potentially plausible analytical decisions. Thus, it explains how our results can
differ from those reported by Gangestad et al. despite analyzing the exact same data. In their
Table 2, they describe the key differences between their and our analytical choices. Here, we
take the opportunity to translate these differences to possible and plausible decisions that have
to be made when walking through the garden of forking paths. The directly derived choices

from these differences are displayed in Table 1.

Table 1

Differences in Gangestad et al.’s and our analytical choices that lead to different paths in the
garden of forking paths

1. Predictor 1: Assessment of fertility
a) Cycle phase whole dataset (N =157)
b) Cycle phase LH validated dataset (n = 112)
¢) Hormone levels: log-transformed hormones
d) Hormone levels: mean-centered and scaled hormones
e) Hormone levels: raw hormone levels
2. If fertility assessed by hormone levels, how are they entered?
a) Estradiol-to-progesterone ratio
b) Estradiol and progesterone separately
3. Predictor 2: masculinity/ muscularity cue
a) Factor analysis, resulting in 3 factors
b) ,.Empicirally vetted strength / upper arm circumference composite
¢) Simultaneous entry of all 7 variables
d) Composite score of all 7 variables
e) Separate models for all 7 variables
4. Control variable
a) Controlling for an interaction effect of BMI
b) Not adding a control variable
5. Two-way vs. Three-way interaction

13
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preferences. Note that this figure only displays approximately 1/4th of the possible and
plausible decisions. The full garden of forking paths can be found in the supplementary
material (Figure S1).

Our preregistration did not specify statistical models. This can be seen as allowing
ourselves many researcher degrees of freedom, making it easier to reveal foregone
conclusions. Of course, we believe we tested models that were reasonably based on the
literature and did not try to engineer a particular conclusion. Moreover, we had several
robustness checks in our paper (e.g., repeating the analyses with » = 112 women with LH
validated fertile phase, using separate models for all cues, and generating a composite score
averaging all cues), thus already protecting against arbitrary analytical decisions, more so than
is usually done in the literature. However, our private beliefs and internal best practices can
hardly stand up to the level of scrutiny in Gangestad et al.’s critical commentary. Therefore,
we decided to run a multiverse analysis (Steegen, Tuerlinckx, Gelman, & Vanpaemel, 2016)
to investigate whether the null results for preference shifts we previously reported (Jiinger et
al., 2018) or Gangestad et al.’s reported effects are more robust (or whether neither are). A
multiverse analysis entails making all the different analytical decisions that would be possible
and plausible for a given hypothesis and then running all the respective statistical tests
(Steegen et al., 2016). The resulting p-values of all these analyses are then displayed in a
single histogram. More precisely, we investigate whether choosing a different path during the
data transformation or analytical decision process has a significant impact on the results and
how many of the different analyses do, indeed, lead to statistically significant results. Thus the
resulting large set of reasonable scenarios will show how conclusions can change because of

arbitrary analytical decisions.

How do we construct such a multiverse of decisions? After all, there already are

almost infinite possible decisions about what counts as an outlier to exclude. To construct this
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multiverse in a principled manner, we focused on the decisions where we and Gangestad at al.
took different turns in the garden of forking paths that were reported as “primary” differences
in their Table 2. This does not, by any means, exhaust all plausible possibilities. One could
easily argue that, for example, including or excluding between-women hormone effects, other
control variables (such as testosterone levels), different random slope specifications, and so
on might be additional plausible decisions. However, all the different decisions that they refer
to, shown in Table 1 and Figure S1, already led to 416 different models and 1,254 p-values of
interest’. We computed all these different models. Data and analysis script for the multiverse

analysis is publicly available (https://osf.io/6athg/).

As displayed in Figure 3, the results suggest that any cycle shifts in mate preferences
for men’s bodies reported in Gangestad et al. might not be robust: Out of 1,254 resulting p-
values, 31 were significant (<.05), thus 2.47 percent. One could think that these significant p-
values all stem from small variations of the model Gangestad et al. report and do, thus,
indicate robustness of their results. This is not the case. Rather, they stem from very different
paths and about half of them even point in the direction opposite of what is predicted by the

ovulatory shift hypothesis. Details can be found in Table S6.

Further, we want to stress that p-values, by their nature, are distributed equally (as
they are equally likely) when the null hypothesis is true. If an effect exists, the distribution of
significant p-values should be right-skewed, even when the effect is small and test power to
detect it is low (Simonsohn, Nelson, & Simmons, 2014). However, the rate of 2.47%
significant p-values from our analysis is even below the rate of 5% significant p-values one
would expect by chance as false positives. Furthermore, the overall distribution is rather

uniform, whereas the significant p-values <.05 are left-skewed, not right-skewed as would be

5 Note that in most models more than one p-value is of interest: Models with E and P separately entered have at
least two, models with the seven predictors entered simultaneously have at least seven and models testing a
three-way interaction also contain a p-value for a two-way interaction.
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expected for a robust effect. Note that the effect Gangestad et al. report in their main analysis
(p =.019, see their Table 4) is the smallest p-value in our multiverse analysis (see Table S6).
How come the effect Gangestad et al. reported is framed as robust by them? Indeed, most of
the models they report are miniscule deviations from their analytical decisions (e.g. including
third variables such as testosterone or age as controls, which neither we nor they ever
discussed as central), but do not really reflect a difference in the primary analytical decisions

as displayed in their Table 2, which we combined in our multiverse analysis.

20-
s i i L 11 - i U
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O 10- 5 T
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000 0.25 0.50 075 1.00
p-values

Figure 3. Histogram displaying the frequency of the 1,254 p-values of interest resulting from
the multiverse analysis. Note that the red dotted line is at p = .05 and thus separates nominally
significant results on the left from nominally non-significant results on the right.
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3. The problem of unfalsifiability

The good genes ovulatory shift hypothesis (proposed by Gangestad et al., 2005) has been
tested in quite a number of studies (meta-analysed in Gildersleeve, Haselton & Fales, 2014,
and Wood et al., 2014). As stated in Gildersleeve, Haselton and Fales (2014), the ovulatory
shift hypothesis makes three directly testable predictions: First, when fertile, women should
be more sexually attracted to men’s characteristics that reflect good genes, compared to their
low-fertility days. Second, cycle shifts in women’s mate preferences for good genes
characteristics should be absent or only weakly present when evaluating men for long-term
relationships. Third, when fertile, women should not be sexually attracted to men’s
characteristics that reflect a higher suitability as a long-term partner, compared to their low-

fertility days.

Since it is not possible to test the third prediction here (as there is no clear hypothesis
regarding which characteristics in men’s bodies should reflect a higher suitability as a long-
term partner), we will focus on the other two predictions. Regarding the first prediction, we
did not find compelling evidence that women’s mate preferences vary across the cycle (or on
high-fertility compared to low-fertility days). Women’s cycle phase did not, neither in our
original study, nor in Gangestad et al.’s reanalysis, nor in our multiverse analysis, interact
significantly with any of the assumed indicators of good genes (i.e., cues of body
masculinity/muscularity) to predict sexual attractiveness ratings. When choosing hormones as
a predictor variable rather than cycle phase, the two-way interaction between hormone levels
and the purported indicators of good genes were also non-significant. However, Gangestad et
al. reported a significant three-way interaction with women’s relationship status. Importantly,
this interaction effect was only significant when log-transforming hormone levels and in
combination with other analytical decisions, e.g., computing a certain composite score and

controlling for BMI. When unpacking this three-way interaction, Gangestad et al. report that
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the effect was only significant for singles, not for partnered women, and in the opposite
direction as predicted by the ovulatory shift hypothesis (though it was in the predicted
direction for partnered women). Still, our multiverse analysis suggests the effects reported by

Gangestad et al. are not robust.

Regarding the second prediction, our and Gangestad et al.’s results point in the same
direction: results for long-term attractiveness do not differ from results for sexual
attractiveness. Indeed, the effect is absent when evaluating cycle phase as a predictor of long-
term attractiveness, but given that the same is true for sexual attractiveness, this result cannot
be seen as in favor of the ovulatory shift hypothesis. Moreover, for those log-transformed
hormone analyses for which Gangestad et al. found significant effects for sexual
attractiveness, the same effects were significant for long-term attractiveness ratings (see their
Table S20). They fail to mention this. This raises the question of how their results can be in
favor of their hypothesis, if results for sexual and long-term attractiveness are virtually
identical. However, Gangestad et al. might argue that there are no long-term attractiveness

cues in bodies that are independent from sexual attractivess cues.

Let us evaluate the evidence. Gangestad et al. seem to agree with us that there are no
ovulatory preference shifts on individual cues to body masculinity or sexual dimorphism, such
as height, contradicting some earlier studies (Little, Jones, & Burriss, 2007; Pawlowski &
Jasienka, 2005). When the focus is shifted to upper-body muscularity, we begin to disagree.
In our analyses we find no evidence for preference shifts at all. Gangestad et al. find
significant effects for a set of analyses with very specific assumptions about how to construct
the muscularity variable, what to control for, how to conceptualize ovulation (on a very
proximate level), how to transform variables, and how to specity the multilevel model.
Contrary to their claims, most of these analytic decisions are not constrained by either their or

our preregistration. Gangestad et al. give extensive justifications for each of their analytic
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decisions, but our multiverse analysis makes it clear that virtually all other reasonable sets of
analytic decisions do not lead to significant results. Of course it might be the case that
Gangestad et al. have indeed identified the most ideal set of analytic decisions, but then it is
still peculiar that their significant effect is so fragile that it immediately breaks down under
most reasonable variations of the analytic decision, especially given that our data provide
more statistical power than most previous studies. For these reasons, we do not think that our
data and results, nor the results reported by Gangestad et al., are in favor of the ovulatory shift
hypothesis. Indeed, the null results of our study are in line with other, recently published,
large-scale replication studies investigating cycle shifts in preferences for masculine faces
(Dixson et al., 2018; Jones et al., 2018; Marcinkowska et al., 2018a), bodies (Marcinkowska
et al., 2018a; van Stein et al., 2019), voices (Jinger et al., 2018b) and behaviors (Stern,
Gerlach, & Penke, 2019). Drawing null conclusions from just our data would be premature.
However, recent work clearly challenges previous evidence for the ovulatory shift hypothesis,
especially because recent studies used more rigorous methods and designs than previous
reports of significant effects (for an overview see Jones, Hahn, & DeBruine, 2019). This
clearly shifts the balance to a need for more positive evidence in order to retain the good

genes ovulatory shift hypothesis.

But even if the three-way interaction between hormones, upper-body muscularity and
relationship status on sexual attractiveness ratings was robust, that does not imply that it is
practically meaningful. We agree with Gangestad et al. that just focussing on p-values and
setting a rather arbitrary cut-off (e.g., p <.05) to decide about the existence of an effect (what
they call “simple up-down thinking”, p. 14) is problematic for several reasons already
outlined by Gangestad et alia. We agree that it is also important to include effect sizes. Thus,
we encouraged Gangestad et al. during the review process to specify the smallest effect size

of interest (SESOI; Anvari & Lakens, 2019 ) that would still be consistent with an adaptive
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evolutionary explanation, and hence in favor of the hypothesis. In section 5.4. Gangestad et al.
state that “the current data do not allow one to pinpoint effect sizes with sufficient precision to
judge their theoretical meaningfulness or practical impact” (p. 13). The reported
unstandardized effect size of their three-way interaction was 0.05 on an eleven-point Likert
scale. Although we agree that “headless digital figures” (p. 34) might not have the same effect
as real-life male bodies, this statement, together with the previously raised issues, shields their
hypothesis from falsification. If we cannot falsify the hypothesis based on p-values or effect
sizes, or the overall evidence provided by recent, rigorous studies, how could we ever do so?

If it is not possible to falsify a hypothesis, is it even possible to confirm it?

We agree with Gangestad et al. that null conclusions can discourage future research on
a topic. We agree that one should not make strong conclusions in favor of the null hypothesis
too early, especially not based on a single study. We agree that more data is needed from
independent, highly powered, preferably preregistered, replication studies employing strong
methods and designs. Regarding the current evidence, we are happy to conclude uncertainty
about the effect. However, it should be noted that most of the original significant findings in
the earlier literature come from underpowered studies, making them at least in need of
replication. All recent high-powered replication studies did not find compelling evidence for
the effect. Statistical tests of more complex hypotheses, like the moderation by relationship
status, were probably underpowered in all existing studies so far. Hence, we encourage
researchers to collect more data on this research question. However, we also urge researchers
to specify testable, falsifiable hypotheses and standards for falsification, as unfalsifiable
hypotheses impede scientific progress, the search for alternative hypotheses, and thus the

accumulation of knowledge.

4. Showcase for the importance and helpfulness of Open Science
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Gangestad et al. are concerned that studies using open scientific practices might be
prematurely evaluated positively without appropriate scrutiny (p. 37). While we take this
concern seriously, we also think the current exchange clearly demonstrates the advantages of
open science, as it would have not been at all possible without embracing open science
practices. The more researchers publicly offer about the planning and hypothesis of a study
(in the form of a preregistration or registered report), the data, analytic code, and material, the
better the study can be critically checked and independently evaluated. This can also motivate
researchers to increase the quality of their work. We agree with Gangestad et al. that
preregistration does not ensure appropriate testing of hypotheses or meaningful results. It
certainly is also not in itself a guarantee for well-conducted research or high data quality.
Most preregistrations are, indeed, improvable, including ours for the current study. We clearly
learned over the last few years that writing a good, precise preregistration is hard, especially
for complex research designs and hypotheses. Still every little bit of added transparency helps,
as every bit reduces researcher degrees of freedom. In garden of forking path situations, the
main thing we want to avoid is choosing the path based on the outcome, i.e., whether a
hypothesis is supported or falsified. Therefore, preregistration prevents a number of
questionable research practices. In addition, we think that review before results, as in the
increasingly popular format of Registered Reports (Chambers, 2013), can clearly improve
scientific practice. Importantly, as many authors in the open science literature have pointed
out, this does not negate the value of exploratory research. Exploration is often useful and
necessary, but to avoid misleading ourselves, strategies to prevent overfitting, including
replication, controlling for multiple testing, or dividing the data into training and test sets are
very important. Further, transparency is crucial: exploratory analyses should be framed as
exploratory. Reporting selected p-values from exploratory research, on the other hand, has

more potential to mislead than to enlighten.
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This valuable post-publication discussion of our work sheds light on many
underdiscussed decisions in data analysis and scientific practice. Although we ultimately
disagree that Gangestad et al.’s re-evaluation of our work leads to substantially different
conclusions, we are glad that open data and preregistration enabled this discussion.
Importantly, many of the researchers of recently published studies investigating ovulatory
cycle shifts (Dixson et al., 2018; Jones et al., 2018; Jiinger et al., 2018a; 2018b; Stern et al.,
2019) opened their data, allowing for in-depth evaluations of the conducted analyses and the
conclusions put forward, as shown in the current debate. However, all studies for which open
data were provided reported no compelling evidence for the ovulatory shift hypothesis. In
sharp contrast, none of the studies reporting evidence in favor of the hypothesis opened their
data, making it impossible to evaluate whether any previously reported evidence is, indeed,
robust. Hence, we not only encourage authors of future studies, but also of previous studies to
open their data and analytic scripts, as we think this is the only way to fairly evaluate the
whole picture. We need to subject the literature that provided support for the effects on which
this discussion is based to the same level of scrutiny applied here to make progress. We agree
that open science practices alone are not an indicator of research quality, but all else being
equal, a more transparent study has a higher potential to make a lasting contribution to our

knowledge.

We are happy that our study shows both the benefits and the challenges of open
science. We think that this process clearly demonstrates the importance of transparency and

we hope that it helps to make future science more open and reproducible.

Data availability

Open data, open analysis script and the supplementary material are publicly available at

https://osf.io/6athg/
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Table S1

Justifications for our rationale for picking seven masculinity predictors

Cue Justification Reference
Physical Increase men’s physical fighting ability Sell, Hone & Pound, 2012;
strength and has been argued to be an indicator of Sell, Lukaszewski, &

men’s genetic quality Townsley, 2017
Shoulder- 1. Shoulder breadth is a highly 1. Kasperk et al., 1997
chest-ratio sexually dimorphic and androgene- 2. Hilletal., 2013
(SCR) dependent trait

Shoulder-hip-

2. Chest and shoulder were reported
to predict men’s rated fighting
ability and mating success

1. Shoulder breadth is a highly

1. Kasperk et al., 1997
ratio (SHR) sexually dimorphic and androgene- 2. Dijkstra & Buunk,
dependent trait 2001
2. Higher SHR in men has previously 3. Hughes & Gallup,
been reported to be perceived as 2003
more dominant and attractive
3. Men with a higher SHR report
higher mating success
Upper arm Biceps reported to predict men’s rated Hill et al., 2013
circumference fighting ability and mating success

Upper body 1. Has been argued to be more 1. Selletal., 2012
volumne important for male fighting ability 2. Priceetal., 2012
relative to 2. Has been found to be sexually

lower body dimorphic
volumne

Testosterone 1. Is highly sexually dimorphic and 1. Andersson, 1994
levels has long been assumed to underlie 2. Hamilton & Zuk,
the facultative expression of 1982; but see Scott et
various masculine cues in males al., 2012
2. Has long been assumed to be an
indicator of good genes in line
with the immunocompetence
handicap hypothesis
Body height 1. Taller men have been reported to

1. Mueller & Mazur,
have higher reproductive success

2001; Nettle, 2002;
2. Cycle shifts in preferences for Pawlowski, Dunbar,
sexual dimorphism in height have & Lipowicz, 2000,
previously been reported but see Stulp &

Barrett, 2016
2. Pawlowski &
Jasienka, 2005
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Table S2

Results of multilevel regression analyses of sexual attractiveness ratings as a function of cycle
phase and men’s masculinity cues, controlling for an interaction with BMI.

y SE ! )4 95% CI
Women’s cycle phase 0.07 0.04 2.07 .040 [0.00, 0.15]
Men’s BMI -1.18 0.32 -3.74 <.001 [-1.82;-0.54]
Men'’s baseline testosterone level -0.05 0.20 -0.25 .803 [-0.25, 0.15]
Men’s body height -0.35 0.24 -1.46 .148 [-0.83, 0.13]
Men'’s physical strength 0.65 0.23 2.79 .007 [0.19, 1.11]
Men’s SCR -0.23 0.27 -0.86 394 [-0.77,0.31]
Men’s SHR 0.20 0.29 0.70 486 [-0.09, 0.49]
Men’s upper-torso volume (relative  -0.16 0.21 -0.78 441 [-0.38, 0.06]
to lower-torso volume)
Men’s upper arm circumference 0.55 0.34 1.65 .103 [-0.13, 1.23]
Cycle phase x men’s BMI 0.02 0.02 0.74 462 [-0.02; 0.06]
Cycle phase x men’s baseline 0.02 0.01 1.10 269 [-0.01, 0.04]
testosterone level
Cycle phase x men’s body height 0.03 0.02 1.83 .068 [-0.01, 0.07]
Cycle phase x men’s physical -0.00 0.02 -0.22 .827 [-0.04, 0.04]
strength
Cycle phase x men’s SCR -0.00 0.02 -0.08 940 [-0.04, 0.04]
Cycle phase x men’s SHR 0.01 0.02 0.31 754 [-0.04, 0.05]
Cycle phase x men’s upper torso 0.01 0.02 0.96 336 [-0.02, 0.05]
volume
Cycle phase x men’s upper arm -0.03 0.02 -1.26 207 [-0.07,0.01]

circumference

Note. This is model 44 in the multiverse analysis. Women’s cycle phase, men’s masculine
traits and their interactions as predictors for sexual attractiveness ratings. All variables had
50,240 observations (157 participants x 4 test sessions x 80 stimuli). We dummy-coded the

variable cycle phase with 0 = luteal, 1 = fertile. All values were z-standardized.



Table S3

Results of multilevel regression analyses of sexual attractiveness ratings as a function of mean
centered and scaled E/P, men’s strength/arm component and women’s relationship status,

controlling for an interaction with BMI.

y SE ] )4 95% CI
Relationship status -0.16 0.15 -1.09 278 [-0.46, 0.14]
Men’s BMI -1.08 0.25 -4.32 <.001 [-1.58;-0.58]
Scaled E/P -0.02 0.29 -0.08 935 [-0.60, 0.56]
S/M component 1.00 0.29 3.46 <.001 [0.42, 1.58]
Relationship status x men’s BMI -0.03 0.05 -0.61 542 [-0.13, 0.07]
Relationship status x E/P 0.53 0.39 1.34 185 [-0.25, 1.36]
Men’s BMI x E/P 0.03 0.02 1.21 227 [-0.01, 0.07]
Relationship status x S/M 0.01 0.05 0.28 782 [-0.09, 0.11]
component
E/P x S/M component -0.02 0.03 -0.62 537 [-0.08, 0.04]
Relationship status x men’s BMI x  -0.04 0.04 -0.82 414 [-0.12, 0.04]
E/P
Relationship status x E/P x S/M 0.03 0.05 0.57 .569 [-0.07, 0.13]
component

Note. This is model 160 in the multiverse analysis. Women’s E/P, men’s strength/arm
component, relationship status and their interactions as predictors for sexual attractiveness
ratings, controlling for BMI. All variables had 44,160 observations (157 participants x 4 test

sessions x 80 stimuli).



Table S4

Results of multilevel regression analyses of sexual attractiveness ratings as a function of raw
E/P, men’s strength/arm component and women’s relationship status, controlling for an

interaction with BMI.

y SE t )4 95% CI
Relationship status -0.22 0.15 -1.46 148 [-0.52, 0.08]
Men’s BMI -1.09 0.25 -4.36 <.001 [-1.59;-0.59]
Raw E/P -0.06 0.10 -0.66 S14 [-0.26, 0.14]
S/M component 1.01 0.29 3.49 <.001 [0.43, 1.59]
Relationship status x men’s BMI -0.02 0.05 -0.30 767 [-0.12, 0.08]
Relationship status x E/P 0.28 0.13 2.10 .038 [0.02, 0.54]
Men’s BMI x E/P 0.01 0.01 1.67 .095 [-0.01, 0.03]
Relationship status x S/M -0.00 0.05 -0.02 981 [-0.10, 0.10]
component
E/P x S/M component -0.01 0.01 -1.09 274 [-0.03, 0.01]
Relationship status x men’s BMIx  -0.02 0.01 -1.48 138 [-0.04, -0.00]
E/P
Relationship status x E/P x S/M 0.02 0.02 1.16 248 [-0.02, 0.06]

component

Note. This is model 212 in the multiverse analysis. Women’s raw E/P, men’s strength/arm
component, relationship status and their interactions as predictors for sexual attractiveness
ratings, controlling for BMI. All variables had 44,160 observations (157 participants x 4 test

sessions x 80 stimuli).



Table S5

Results of multilevel regression analyses of sexual attractiveness ratings as a function of cycle
phase and men’s masculinity cues, controlling for an interaction with BMI.

y SE t 2 95% CI
Women'’s cycle phase 0.02 0.05 0.51 610 [-0.08, 0.12]
Relationship status -0.24 0.15 -1.64 .103 [-0.54; 0.06]
Men’s baseline testosterone level -0.02 0.22 -0.09 926 [-0.46, 0.42]
Men’s body height -0.09 0.25 -0.35 728 [-0.59,0.41]
Men’s physical strength 0.57 0.25 2.24 .028 [0.07, 1.07]
Men’s SCR -0.02 0.03 -0.07 .946 [-0.08, 0.04]
Men’s SHR 0.33 0.31 1.09 281 [-0.29, 0.95]
Men’s upper-torso volume (relative to -0.13 0.22 -0.58 561 [-0.57,0.31]
lower-torso volume)
Men’s upper arm circumference -0.28 0.28 -1.03 .308 [-0.84, 0.28]
Cycle phase x relationship status 0.10 0.07 1.50 135 [-0.04; 0.24]
Relationship status x men’s baseline 0.02 0.03 0.58 .562 [-0.04, 0.08]
testosterone level
Relationship status x men’s body height -0.05 0.04 -1.15 252 [-0.13,0.03]
Relationship status x men’s physical 0.01 0.04 0.15 .881 [-0.07, 0.09]
strength
Relationship status x men’s SCR -0.04 0.04 -1.03 .304 [-0.12, 0.04]
Relationship status x men’s SHR 0.05 0.04 1.19 235 [-0.03, 0.13]
Relationship status x men’s upper torso -0.03 0.03 -1.00 318 [-0.09, 0.03]
volume
Relationship status x men’s upper arm -0.03 0.05 -0.62 538 [-0.13, 0.07]
circumference
Cycle phase x men’s baseline testosterone 0.02 0.01 0.25 799 [-0.00, 0.04]
level
Cycle phase x men’s body height 0.01 0.02 0.63 .526 [-0.03, 0.05]
Cycle phase x men’s physical strength -0.01 0.02 -0.48 .631 [-0.05, 0.03]
Cycle phase x men’s SCR -0.01 0.03 -0.41 .684 [-0.07, 0.05]
Cycle phase x men’s SHR -0.00 0.03 -0.07 .943 [-0.06, 0.06]
Cycle phase x men’s upper torso volume 0.02 0.02 0.91 .363 [-0.02, 0.06]
Cycle phase x men’s upper arm -0.03 0.02 -1.22 223 [-0.07, 0.01]
circumference
Cycle phase x men’s baseline testosterone 0.02 0.03 0.73 468 [-0.04, 0.08]
level x relationship status
Cycle phase x men’s body height x 0.03 0.03 0.88 381 [-0.03, 0.09]
relationship status
Cycle phase x men’s physical strength x 0.02 0.03 0.53 .599 [-0.04, 0.08]
relationship status
Cycle phase x men’s SCR x relationship 0.02 0.04 0.39 .700 [0.06, 0.10]
status
Cycle phase x men’s SHR x relationship 0.01 0.04 0.28 179 [-0.07, 0.09]
status
Cycle phase x men’s upper torso volume x -0.01 0.03 -0.29 174 [-0.07, 0.05]
relationship status
Cycle phase x men’s upper arm 0.02 0.04 0.69 490 [-0.06, 0.10]

circumference x relationship status

Note. This is model 18 in the multiverse analysis. Women’s cycle phase, men’s masculine
traits and their interactions as predictors for sexual attractiveness ratings. All variables had
50,240 observations (157 participants x 4 test sessions x 80 stimuli). We dummy-coded the

variable cycle phase with 0 = luteal, 1 = fertile. All values were z-standardized.



Table S6

Overview of all significant p-values from the multiverse analysis, ordered by size of p-value

Model no. Interaction Estimate p-value Expected
direction?
108 Relationship status x log E P 0.04 .019
x S/M comp
229 SHR x raw_EP -0.01 .023 no
106 Relationship status x log E P 0.03 .025
x Factor2
330 Relationship status x 0.14 .029
upperarmAVG x
scaledEstradiol

265 log_Estradiol x Height 0.06 .032 yes
403 upperarmAVG x 0.00 .032 no

raw_Progesterone
242 SHR x raw_EP -0.01 .032 no
342 S/M comp x 0.04 .035 no

scaledProgesterone
222 Factor]l x raw_EP -0.01 .035 no
351 upperarmAVG x 0.04 .035 no

scaledProgesterone
277 S/M comp x log_Estradiol -0.05 .036 no
114 Relationship status x log E P 0.02 .036

x Strenght

216 raw_EP x SHR -0.01 .037 no
255 raw_EP x SHR -0.01 .038 no
275 Factor2 x log_Estradiol -0.05 .038 no
148 log E P x Height 0.01 .038 yes
394 S/M comp x 0.00 .040 no

raw_Progesterone
338 Relationship status x 0.10 .041

upperarmAVG x

scaledEstradiol




264 Relationship status x -0.03 .043

S/M comp x
log Progesterone
263 log_Estradiol x Factor3 -0.05 .043 no
58 Relationship status x Cycle 0.15 .043
phase x all cues avg
190 SHR x scaledE_P -0.03 .044 no
108 log E P x S/M comp -0.02 .044 no
282 Relationship status x SCR x -0.06 .045
log_Estradiol
304 Height x log_Progesterone -0.01 .046 yes
282 SCR x log_Estradiol 0.04 .046 yes
399 SCR x raw_Progesterone -0.00 .047 yes
135 Height x log E P 0.01 .048 yes
262 Relationship status x -0.03 .049
Factor2:log Progesterone
71 Relationship status x 0.15 .049
all cues avg x cycle phase
177 SHR x scaledE_P -0.03 .049 no

Note: We did not specify whether the interaction was in the direction as predicted by the
ovulatory shift hypothesis for all three-way interactions, as it is not trivial to do so. One would
first have to unpack the effect (e.g. separate analyses for partnered and single women), as in
three-way interactions different directions can result from a different interplay of the involved
two-way interactions. However, even if all three-way interactions were in the expected
direction, still half of all effects in the table would be in the opposite direction of what is
predicted by the ovulatory shift hypothesis. This is exactly what would be expected if all
significant effects supporting the hypothesis were due to chance.



Table S7

Factor loadings resulting from exploratory factor analysis

Factor 1 Factor 2 Factor 3
Height 48
SHR 97
SCR .62
Strength 74
Baseline Testosterone 44 42
Upperarm 71
circumference
Upper torso volumne 77
relative to lower torso
volumne
SS loadings 1.55 1.52 0.74
Proportion variance 0.22 0.22 0.11
Cumulative variance 0.22 0.44 0.55

Note. Only factor loadings higher than .3 are displayed. Oblimin rotation. 50 iterations
maximum for rotation convergence. SS loadings = summed square loadings.



Figure S1

Density of hormone values after centering them to their subject-specific mean and scaling
them, underlining that a log-transformation is not necessary for statistical reasons.

hormone
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Figure S2

Exemplary representation of a garden of forking paths, involving possible and plausible
analytical decisions after deciding for cycle phase as a predictor for cycle shifts in preferences
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